Production de poudre composite biosourcée pour la fabrication additive (SLS, SLM, binder jetting...)

BREVET 22305709.2

équipes du laboratoire IATE (Ingénierie des Agropolymères et Technologies Émergentes) et de l'institut de recherche néo-zélandais SCION ont développé un procédé de production de poudres composites à partir d'un polymère biosourcé (Polyhydroxyalcanoate - PHA), de cires biosourcées et/ou de fibres lignocellulosiques.

Le procédé permet de produire des poudres calibrées entre 10 et 200 microns de diamètre pour une utilisation en fabrication additive par impression 3D – avec des techniques SLS ou SLM (frittage sélectif par laser) ou binder jetting (impression par projection d'un liant).

Description de l'invention

L'invention consiste en un procédé de production, par émulsification ou par précipitation dans un solvant eutectique, de poudres composites biosourcées à partir de différents PHA, de cires végétales et de poudres végétales (biomasse lignocellulosique) pour la fabrication additive.

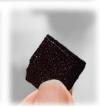
Peu de matériaux biosourcées sont aujourd'hui compatibles avec les techniques d'impression 3D, et en particulier les techniques d'impression à base de poudres, dû aux limitations technologiques, à la fois des procédés d'impression et des propriétés des matériaux biosourcés. Par ailleurs, les procédés de production de tels matériaux ont généralement une empreinte environnementale significative.

Les formulations et procédés développés permettent d'une part la production de poudres composites totalement biosourcées, incluant des PHA compatibles avec la fabrication additive, et d'autre part de moduler les propriétés des matériaux imprimés.

3BCAR INR

BIOPROCÉDÉS - BIOTECHNOLOGIES BLANCHES -**ENVIRONNEMENT**

ÉQUIPES:



1 : Poudre composite biosourcée ; 2 : Impression par laser; 3. Motif imprimé par SLS

AVANTAGES

- Obtention de poudres composites compatibles avec les techniques d'impression 3D, et plus particulièrement la SLS
- Poudres composites biosourcées biocompatibles à faible impact environnemental
- Modulation des propriétés finales des matériaux par la formulation (proportion PHA, cires et charges lignocellulosiques)

MOTS-CLÉS: fabrication additive, impression 3D, SLS, polyhydroxyalcanoate, cires, lignocellulose, poudre composite

----- APPLICATIONS -----

L'invention décrite peut intéresser les secteurs industriels et partenaires suivants:

- Secteur biomédical
- Industrie du cosmétique
- Industrie du packaging
- Industrie de la plasturgie : substituer les polymères issus de produits pétroliers utilisés en impression 3D
- Industriels de fabrication additive pour tester ces nouveaux matériaux
- Producteurs de PHA et cires pour la formulation des poudres

Responsable Scientifique Claire MAYER (UMR 1208 IATE) Email: claire.mayer@inrae.fr

PARTENARIAT / LICENCE

Collaboration de recherche, licence sur brevet ou option de licence avec un programme de validation R&D

STADE DE DEVELOPPEMENT : La validation de la preuve de concept a été effectuée par les équipes de recherche qui proposent désormais une option de licence à un industriel afin de tester ces poudres pour des applications spécifiques.

Cette invention a fait l'objet d'une demande de brevet 22305709.2.

Chargée de Valorisation Stéphanie LEMAIRE Tel: 06 24 03 86 53 • Email: stephanie.lemaire@inrae.fr